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models for the thermal conductivity of alkali halides and 
its volume dependence 
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Received 6 June 1988 

Abstract. Accurate dispersion relations have been used for the first time in a calculation of 
the volume dependence of the thermal conductivity in 16 alkali halides with the NaCl 
structure. Phonon dispersion relations have been calculated throughout the whole first 
Brillouin zone for different values of the lattice constant. These have been used to solve the 
Boltzmann equation by a variational method and to obtain the thermal conductivity for 
different lattice constants. We have used both a deformation dipole model and a shell model 
and we compare the results obtained with them. 

We discuss various contributions to the volume dependence of the thermal conductivity 
and we find good agreement with room-temperature experiments. The differences in this 
volume dependence among the alkali halides are mainly caused by changes in the three- 
phonon scattering rate with volume whereas changes in the anharmonic potential give 
approximately the same contribution to all alkali halides studied. 

1. Introduction 

The volume dependence of the thermal conductivity il is often expressed by the Bridgman 
parameter 

g = -[a(lnA)/a(In VIT. (1) 
The Bridgman parameter has been measured for many alkali halides but there are very 
few theoretical calculations of g. The estimates that have been done start with the 
Leibfried-Schlomann (LS) formula [ 1 , 2 ]  

I. = C , M S O ~ / n 2 / 3  y2T ( 2 )  
where C1 is a constant, n is the number of atoms in a primitive unit cell, OD is the Debye 
temperature, M is the mean mass of an atom, a3 is the volume per atom and y is 
Gruneisen’s parameter. The Bridgman parameter is then given by 

g = 3 y  + 2q - Q (3) 
where q is the logarithmic volume derivative of y [ 2 ] .  This is a very rough way of 
estimating the volume dependence. The change in the frequencies o is estimated by y 
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and the change in the anharmonic potential is given by q. No account is taken of the 
possibility that different parts of the phonon spectra behave differently when pressure 
is applied. This might cause some three-phonon processes to disappear while 
others remain relatively unchanged. Equation (3) gives fairly good agreement for many 
alkali halides but it cannot predict the unusually large g-values found for some alkali 
halides [3]. It seems as if all g-values obtained from equation (3) lie in the range 6.5-8.5 
whereas experimental g-values range from 6 to 15. 

In [4] the volume dependence of the mean velocity of sound and the Gruneisen 
parameter from models of the inter-ionic potentials were calculated. These were used 
in a Ls-type formula to calculate the volume dependence of the thermal conductivity. It 
was necessary to include a structure factor to account for the decrease in the thermal 
conductivity across a phase change. Good agreement was found in [4] with experiments 
on NaCl, KCl and RbBr when the mean velocities of sound were calculated from the 
bulk modulus. 

We have in a previous paper calculated the thermal conductivity at atmospheric 
pressure [5]. We used a deformation dipole (DD) model to calculate the dispersion 
relation throughout the whole first Brillouin zone. The linearised Boltzmann equation 
including only three-phonon scattering processes was solved by a variational method 
with a trial functionf = A V T  * U ,  where U is the group velocity. We found good agree- 
ment with experiments (within 10-20%) in most crystals. 

In this paper, we suggest a way to calculate the parameters in the DD model at 
different volumes. This makes it possible to calculate the dispersion relation and thermal 
conductivity at two nearby volumes and to estimate the derivative in equation (1). We 
use the experimentally determined room-temperature volumes at atmospheric pressure 
and 0.1 GPa [6]. We also employed the shell model with the parameters given in [7] and 
we compare the results. 

2. Calculation of the dispersion relations 

2.1. Shell model 

The shell model parameters for the alkali halides were calculated in [7]. All parameters 
are ion dependent, i.e. the parameter for an ion is the same in all crystals. The only 
crystal-dependent parameter is the nearest-neighbour distance. The parameters have 
been found by simultaneously fitting the optical properties of all alkali halides. The 
volume dependence of the shell model parameters are found by following [ X I .  We 
assume that the shell charges, free-ion polarisabilities and ionic charges (Z = 0.97) are 
independent of volume. This means that the shell-core force constants scale with the 
volume. The required derivatives of the short-range potentials between nearest and 
next-nearest neighbours are derived from 

F,R(r) = A ,  exP(-%,r) - C,/r6 - D,/r8 i , j = + o r -  (4) 

with the appropriate values of r .  The short-range potential includes a repulsive Born- 
Mayer potential and an attractive van der Waals potential. The constantSA,, q,, Cl, and 
D, are determined from ion-dependent parameters [7]. 

With the shell model, we calculate dispersion relations for 16 alkali halides with the 
NaCl structure. LiI is not included since the shell model gives imaginary frequencies in 
this case. 
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2.2. Deformation dipole model 

The required derivatives of the short-range potential are also in this case calculated from 
a potential of the form of equation (4) but we use the values of C, and D, given in [9]. 
The constants in the Born-Mayer part are determined from the values of the first- and 
second-order derivatives of the potential energy which can be derived from the elastic 
constants and the nearest-neighbour distance at atmospheric pressure. The values of 
these are taken from [lo]. The elastic constants are also found in table 3 below. We 
include only nearest-neighbour short-range interactions since it turned out to be impos- 
sible to fit the Born-Mayer potential between next-nearest neighbours from the values 
of the derivatives given in [ 101. 

The cation polarisability a, is assumed to be independent of volume. This assumption 
can be inferred from an ab initio calculation in [ll] where the polarisability of a cation 
was found to be the same regardless of which crystal it was put into. In contrast, the 
polarisability of an anion varied greatly between different crystals. We take the cation 
polarisability as calculated in [ l l ]  and derive the anion polarisabilities a- from the 
Clausius-Mossotti relation 

( E ,  - 1/€, + 2) = (4n/3uo)(a+ + a-) ( 5 )  

where v, is the unit-cell volume. The appropriate high-frequency dielectric constants E, 

to be inserted in the Clausius-Mossotti relation are taken as the experimental values at 
pressures of 0 and 0.1 GPa. The value at 0.1 GPa is determined from 

(r/E,)(dC,/dr) = - E , ( P ~ ~  + 2p12) (6) 
wherep,, andp,, are photo-elastic constants given in table 1. Note that the photo-elastic 
constants for the rubidium salts are not strict experimental values as explained in [15] 
but we include these salts in spite of this since the values seem reasonable. 

The deformation dipoles which are important in this model can be simply related to 
the Szigeti effective charge e* [lo] which is calculated from 

[e*/(p~,>”~]/{1 - (4~d/3)[(a+ + a->/uaI)  = [ ( E O  - E = ) / ~ J ~ ~ / ~ w ~  (7) 
where p is the reduced mass of the ions, is the static dielectric constant and coo is the 
infrared dispersion frequency. We use the experimental values of the dielectric constants 
and infrared dispersion frequency which are listed in table 1. We have found exper- 
imental input data for 10 alkali halides. 

3. Comparison with experiment 

There are very few measurements of the dispersion relations under pressure. We have 
found data on only KBr, RbBr and RbI [1618]. The Griineisen-mode parameters 

Yqj = -UWn[4q,i)l>/d(ln WIT (8) 
are given in table 2 for three different q-vectors. Both models give correct sign of all 
Griineisen-mode parameters and also give in most cases the correct magnitude. None 
of the models can be said to be better than the others from the data in table 2. 

In order to check further our two models for the pressure dependence, we calculated 
the elastic constants from the slope of the acoustic branches in the (1,1,0)  direction 
near the r point. It can be seen in table 3 that the shell model does not give good values 
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Table 1. Input values for the DD model at 0 and 0.1 GPa [ll-141 

a+ L L ( O . 1 )  WTO(o) WTO(O.1) 
Crystal (A’) (A’) pI1 plz (A’) E ~ ( O )  ~o(0.1) (1013 rad s-l) (1013 rad s-’) 

LiF 

NaF 
NaCl 
NaBr 

KC1 
KBr 
KI 

RbCl 
RbBr 
RbI 

0.032 0.890 0.024 0.132 0.889 9.030 8.996 5.735 

0.136 1.039 0.080 0.200 1.038 5.100 5.073 4.628 
0.136 3.152 0.115 0.160 3.144 5.920 5.866 3.072 
0.135 4.289 0.148 0.184 4.278 6.290 6.215 2.512 

0.680 3.492 0.212 0.155 3.480 4.860 4.811 2.666 
0.680 4.668 0.217 0.169 4.653 4.920 4.863 2.139 
0.680 6.788 0.208 0.166 6.758 5.110 5.040 1.914 

1.080 3.755 0.288 0.172 3.743 4.900 4.850 2.185 
1.080 4.960 0.293 0.185 4.943 4.870 4.813 1.642 
1.080 7.064 0.262 0.167 7.030 4.930 4.864 1.419 

5.756 

4.648 
3.101 
2.540 

2.700 
2.169 
1.949 

2.216 
1.673 
1.447 

of the elastic constants as has already been pointed out in [7]. This is especially severe 
in the lithium and sodium salts. The DD model gives much better elastic constants, which 
is expected since they have been used as input. To be more precise, we have used the 
bulk modulus B = (CI1 + 2Cl2)/3 as input in the DD model and BDD is seen to be in 
perfect agreement with Bexp as it should be. Since we are using central forces, CI2 should 
be equal to C44. The small differences between the model values of CI2 and C44 is a 
measure of the accuracy of our calculated elastic constants. The better value should be 
that obtained for Cd4 since CI2 is determined from a difference between terms of similar 
size. 

The pressure dependence of the elastic constants is given in table 4 and it is seen that 
the shell model gives slightly better values in most cases. The pressure dependence of 
the elastic constant C, is given as 

p c ,  = (l/Co,>(AC,/AP) (9) 

Table 2. Comparison between the shell model, DD model and experimental values [16-181 
of the Gruneisen-mode parameter y for KBr, RbBr and RbI for three q-vectors: TA, 
transverse acoustic; LA, longitudinal acoustic; TO, transverse optic. 

Alkali 
(0.2,0.0,0.0) (0.2,0.2,0.0) (1.0, 0.0,O.O) 

halide Model TA LA TO TA LA TO TA LA TO 

KBr 
KBr 
KBr 

RbBr 
RbBr 
RbBr 

RbI 
RbI 
RbI 

Shell 

Experimental 

Shell 

Experimental 

Shell 

Experimental 

DD 

DD 

DD 

-0.40 2.53 2.54 -0.35 1.83 2.43 -0.61 -0.25 2.70 
-0.67 2.37 2.36 -0.59 1.55 2.28 -0.84 -0.24 2.45 
-0.70 2.50 - -0.60 2.30 - -0.70 -0.60 - 

-0.73 2.51 2.45 -0.66 1.84 2.34 -1.03 -0.61 2.64 
-0.76 2.35 2.10 -0.68 1.58 2.06 -1.07 -0.65 2.19 
-0.46 2.53 - -0.86 1.60 - -0.84 -0.67 - 
-0.62 2.49 2.44 -0.57 1.87 2.34 -0.97 -0.67 2.64 
-0.82 2.39 2.36 -0.74 1.61 2.27 -1.12 -0.65 2.51 
-0.98 1.84 2.30 -1.28 1.89 2.40 -1.53 -0.84 2.46 
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Table 5. The TO frequency at the r point and its mode y calculated with the shell model and 
DD model compared with experimental values [14,19-22], 

w % ?a +hf 

Crystal rad s-') rad s-l) (10'; rad SKI) ~ $ 6 ~ ~  @ y?g 

LiF 
LiCl 
LiBr 

NaF 
NaCl 
NaBr 
NaI 

KF 
KC1 
KBr 
KI 

RbF 
RbCl 
RbBr 
RbI 

CsF 

5.22 
3.39 
2.80 

4.57 
3.04 
2.51 
2.07 

3.55 
2.64 
2.14 
1.86 

2.85 
2.16 
1.64 
1.41 

2.43 

5.80 
- 
- 

4.44 
3.23 
2.64 
- 

- 
2.57 
2.08 
1.79 
- 
2.18 
1.60 
1.36 
- 

5.76 
3.81 
3.22 

4.64 
3.08 
2.52 
2.18 

3.57 
2.67 
2.14 
1.92 

2.94 
2.24 
1.69 
1.41 

2.39 

6.17 1.58 2.35,2.59 
7.31 - - 
7.84 - 
2.62 2.55 2.08,2.95 
3.15 2.31 2.35,2.31 
3.11 2.50 2.37,2.58 
3.37 - 2.54 

- 

- 2.42 - 
2.60 2.27 2.28,2.83,2.20 
2.52 2.35 2.06,2.46,2.30 
2.56 2.39 2.20,3.1,2.14 

- 2.35 - 
2.51 2.32 2.16,2.40 
2.43 2.09 2.39,2.02 
2.41 2.34 2.09,2.5,2.38 

- 2.15 - 

It is only PC,, for the potassium and rubidium salts that are better given by the DD model 
but it cannot reproduce the change in sign of PC,, when going towards the lighter alkali 
halides. 

Table 6. The linear coefficient q, of thermal expansion and the specific heat Cv per unit cell 
at 300 K calculated with the shell model and DD model compared with experimental values 
[23,24]. 

(Y f" ff y p  cshell  C p C &"P ashell 

Crystal (10-5K-1) (lO-'K-') K-I) (lo-*; J K-') (lo-*; J K-') J K-') 

LiF 5.87 2.21 3.44 6.50 6.67 6.47 
LiCl 8.56 - 4.40 7.58 - 7.30 
LiBr 8.42 - 4.89 7.82 - 7.50 

NaF 3.44 3.03 3.35 7.43 7.50 7.49 
NaCl 4.48 3.26 4.02 7.89 7.90 7.90 
NaBr 4.73 3.64 4.18 8.03 8.03 8.01 
NaI 4.89 - 4.48 8.10 - 8.07 

KF 3.08 - 3.14 7.81 - 7.78 
KCl 3.85 3.30 3.66 8.03 8.04 8.04 
KBr 3.92 3.48 3.85 8.11 8.12 8.13 
KI 4.19 3.67 4.04 8.15 8.16 8.16 

RbF 2.88 - 3.17 7.97 - 7.90 
RbCl 3.59 3.28 3.66 8.11 8.11 8.11 
RbBr 3.74 3.21 3.77 8.18 8.18 8.19 
RbI 3.87 3.55 3.93 8.20 8.20 8.22 

CsF 1.90 - 3.17 8.05 - 7.94 
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We have also checked the value of the TO frequency at the r point. The shell model 
gives a slightly better value of the frequency while the DD model gives a better volume 
dependence (table 5) .  The shell model values of oT0 were expected to be close to the 
experimentally determined oT0 since these have been used in the fitting procedure. 

As a control of the average behaviour of all phonons, we calculated the linear 
coefficient al of thermal expansion and the heat capacity Gv per unit cell at 300 K from 
the relations 

The general trend in table 6 is that the DD model in all cases gives too low a value of a, 
whereas the shell model gives too high a value of a, in most crystals. Once again the 
lithium salts are well off the mark but in the other salts the agreement is within 1@-20% 
with the DD model and within 1-10% with the shell model. The Cy-values obtained with 
both models are in very good agreement with experiments with the exception of the 
lithium salts. 

From all these controls of the dispersion relations, it is not possible to say that one 
model is better than the other. The severe failure of the shell model is that it does not 
give the initial slope of the acoustic branches correctly. In contrast, the shell model gives 
good values for most volume dependences of the frequencies. It is clear, however, that 
none of the models works well for the lithium salts. 

Table 7. The thermal conductivity A at 300 K calculated with the shell model and DD model 
compared with experimental values. Clll is a third-order derivative of the potential energy 
of a pair of nearest neighbours. 

Aexp ADD c ?l? 
cshell 

111 
Ashell 

Crystal (W m-' K-' 1 (1012 Pa) (W m-' K-' ) (1012Pa) (Wm-'K-' ) Reference 

LiF 
LiCl 
LiBr 

NaF 
NaCl 
NaBr 
NaI 

KF 
KC1 
KBr 
KI 

RbF 
RbCl 
RbBr 
RbI 

CsF 

8.30 
1.08 
0.591 

14.3 
5.28 
1.56 
0.523 

4.90 
6.61 
2.81 
1.66 

1.03 
2.06 
4.18 
.2.66 

0.759 

-2.38 
-0.96 
-0.71 

-1.67 
-0.84 
-0.67 
-0.48 

-1.02 
-0.66 
-0.56 
-0.45 

-0.80 
-0.58 
-0.50 
-0.42 

-0.58 

13.92 
- 

21.2 
6.32 
2.10 

-1.01 
- 
- 

-1.07 
-0.63 
-0.50 
- 

- 
6.49 
2.54 
1.41 
- 

2.23 
4.05 
2.19 

- 

-0.51 
-0.43 
-0.34 
- 

-0.49 
-0.39 
-0.32 

14.30 

1.80 

16.3 
5.95 
2.15 
1.30 

6.35 
6.17 
2.75 
1.91 

2.25 
2.33 
3.23 
1.93 
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4. The thermal conductivity 

The expression obtained for the thermal conductivity in [5] is 

A = T O ~ / G  

where 0 and G are two integrals given in [5] .  The scattering processes are found in the 
integral G whereas 8 is proportional to a summation over the heat carried by each 
branch. 

The calculated thermal conductivity at 300K is found in table 7 together with 
experimental data and values of the third-order derivatives Clll of the potential energy 
of a pair of nearest neighbours, which have been used in the calculations. As we already 
mentioned in Q 2.2, we were able to calculate dispersion relations with the DD model for 
only 10 crystals. The DD model gives a thermal conductivity higher than that obtained 
with the shell model in the lithium and sodium salts and in RbC1. This difference can be 
explained by the magnitudes of ClI1 which are smaller with the DD model than with the 
shell model in all alkali halides. However, this cannot explain the reverse relationship 
of the calculated A-values for RbBr, RbI and the potassium salts which has to be 
explained by differences in the calculated dispersion relations. 

As we pointed out in [5], the value of Clll is very sensitive to the parameters in the 
assumed potential. We have in this paper also included van der Waals potentials; this 
results in a lower value of the magnitude of Clll. This leads in some cases to calculated 
A-values which are higher than the experimental values. According to the variational 
principle, we should always obtain a lower estimate of the thermal conductivity, indi- 
cating that some part of our model is not entirely correct. 

The most probable cause of the discrepancies is the value of Clll since it varies greatly 
with different models for the potential energy.We have also noted that the inclusion of 
van der Waals potentials increases the magnitude of the third-order derivatives of the 
potential energy of a pair of next-nearest neighbours. When account is taken of the fact 
that there are more terms coming from the summation over next-nearest neighbours 
than from the summation over nearest neighbours, we can expect an additional con- 
tribution of several per cent if next-nearest neighbours are included in the anharmonic 
coupling. Whether this would give a higher or lower value of the thermal conductivity 
is not certain. 

The largest changes in the ADD-values compared with our previous calculation with 
the DD model [5] are found for RbBr and RbI. The previous small ADD-value for RbI has 
now increased and gives rather good agreement with experiment while the ADD-value 
of RbBr is now severely overestimated. The extremely low ADD-value for KI found 
previously has improved somewhat but it is still too low. Apparently, KI must have some 
properties which are difficult to include in simple theories since also in a phenom- 
enological examination of measured thermal conductivity values [32] KI did not fit into 
the theory. 

5. Volume dependence of the thermal conductivity 

In order to find the important contributions to g (equation (l)), we extract the explicit 
r-dependence from the integrals in equation (13) (including the r-dependences in q and 
U) and we obtain 0 = ?Ores and G = r5 C:ll G,,, where Clll is a third-order derivative of 
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the potential energy. The Bridgman parameter can then be written 

(14) g = $ - 2  d ( l n  6,,,)/a(ln r )  + @(ln Clll)/a(ln r )  + Bd(ln Gres)/d(ln r ) .  

( 2 )  PI: 

It may seem strange that the r-dependence gives a term - B  in equation (3) whereas it 
gives +A in equation (14). This is explained, however, by the definition of y in equation 

Y = G l / f  (15) 

where f is a second-order derivative of the potential energy between nearest neighbours. 
If r had not been included in the definition of y ,  we would have had an additional term 
f in equation (3) since y is squared in equation (2). 

The calculated Bridgman parameter and the contributions from each term in 
equation (14) are given in table 8. We find a negative contribution to g from Clll and 
positive contributions from the other terms in equation (14) with the exception of the 
lithium salts where also Or,, gives a negative contribution. 

When the contributions are summed, we find that the shell model always gives a 
higher value for g than the DD model does. This is consistent with our investigations in 
0 3, where the Gruneisen-mode parameters obtained with the shell model were usually 
greater than those obtained with the DD model. This suggests that the dispersion relations 
obtained with the shell model are more volume dependent than those obtained with the 
DD model. Since we found that none of our models worked well for the lithium salts, we 
shall not include these in the following discussion. 

The calculated g-values range from 6.0 to 15.9. This range arises mainly from the last 
term in equation (14) which depends on the three-phonon scattering rate. As could be 

15 

- 
0 
C 
c 

g 10 
a. 
x Y 
n 

5 

Theoretical g-value 

Figure 1. Plot of experimental values against theoretical values of the Bridgman parameter 
g: 0, shell model; + DD model. 
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expected, these scattering processes are sensitive to the shape of the dispersion relations 
which results in very different values for the contribution to g, not only from different 
crystals but also from different models applied to the same crystal. 

The third term in equation (14), containing CIl1, has nearly the same value for all 
alkali halides. This term does not contribute to the differences in g-values between 
crystals but it cannot be ignored in the calculations since the magnitude of g would then 
be in serious error. 

The second term in equation (14) varies somewhat in the sequence of alkali halides 
and to some extent it modulates the large variations in the G,,,-term. A high value of the 
G,,,-term is often accompanied by a small value of the O,,,-term and vice versa. 

Even though the results for the shell model and DD model differ in their absolute 
values, we find the same trends with both models. When comparing our calculated values 
with experimental values, we see in table 8 and figure 1 that the DD model gives better 
agreement with experiment. 

6. Summary 

We have calculated the dispersion relations with the shell model and the DD model. We 
find that the DD model gives good agreement with experiment for both the value of the 
frequencies and their volume dependence. The shell model does not give the correct 
value for the long-wavelength acoustic modes but it gives a better volume dependence 
than does the DD model. 

The calculated values of the thermal conductivity at room temperature differ in the 
two models; to some extent, this is explained by different values of the third-order 
derivative of the potential energy of a pair of nearest neighbours. However, the cal- 
culated values are in most cases in good agreement with experiments. 

The calculated volume dependence of the thermal conductivity gives a large variation 
in the values for the Bridgman parameter g which is also observed in experiments. The 
DD model also gives good agreement for the magnitude of g. The volume dependence 
of the number of three-phonon scattering processes is the main cause of the large 
variation between the g-values of the alkali halides. The contribution from the volume 
dependence of the anharmonic potential is approximately the same in all alkali halides 
and does not contribute to the differences in the g-values but it has to be included in 
order to obtain the correct magnitude of g. 
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